Профессионально о мебели. Информационный портал

Виды и работа. Применение и как выбрать. Устройство. Тепловизор. Инфракрасная термография. Принцип работы и устройство тепловизора Принцип действия тепловизора

К ПНВ можно отнести и Теплови́зор - устройство для наблюдения за распределением температуры исследуемой поверхности. Распределение температуры отображается на дисплее (или в памяти) тепловизора как цветовое поле, где определённой температуре соответствует определённый цвет. Как правило, на дисплее отображается диапазон температуры видимой в объектив поверхности. Типовое разрешение современных тепловизоров - 0,1 °C.

Принцип действия тепловизора идентичен ПНВ и основан на преобразовании инфракрасного излучения в электрический сигнал, который усиливается и воспроизводится на экране индикатора. В случае с мы фиксируем излучаемое объектом, а не отражённое излучение в ИК диапазоне.

Тепловизоры делятся на:

· Стационарные

Предназначены для применения на промышленных пре приятиях для контроля за технологическими процессами в температурном диапазоне от −40 до +2000 °C. Такие тепловизоры, зачастую имеют азотное охлаждение, для того, чтобы обеспечить нормальное функционирование приемной аппаратуры. Основу таких систем составляют, как правило, тепловизоры третьего поколения, собранные на матрицах полупроводниковых фотоприемников.

· Переносные

Новейшие разработки в области применения тепловизоров на базе неохлаждаемых микроболометров из кремния, позволило отказаться от использования дорогостоящей и громоздкой охлаждающей аппаратуры. Эти приборы обладают всеми достоинствами своих предшественников, таких как малый шаг измеряемой температуры (0,1 °C), при этом позволяют применять тепловизоры в сложных оценочных работах, когда простота использования и портативность играют очень большую роль. Большинство портативных тепловизоров имеют возможность подключения к стационарным компьютерам или ноутбукам для оперативной обработки поступающих данных.

Рисунок 131. Изображение на дисплее тепловизора.

Современные тепловизоры нашли широкое применение как на крупных промышленных предприятиях, где необходим тщательный контроль за тепловым состоянием объектов, так и в небольших организациях, занимающихся поиском неисправностей сетей различного назначения. Так, сканирование тепловизором может безошибочно показать место отхода контактов в системах электропроводки. Особенно широкое применение тепловизоры получили в строительстве при оценке теплоизоляционных свойств конструкций. Так, к примеру, с помощью тепловизора можно определить области наибольших теплопотерь в строящемся доме и сделать вывод о качестве применяемых строительных материалов и утеплителей. Тепловизоры также широко применяют в энергетике, металлургии, при строительстве дорог, судостроении, строительстве и эксплуатации железнодорожного полотна, метрополитене, автомобильной промышленности, ветеринарии, искусстве. Тепловизоры как и ПНВ все шире применяются вооруженными силами развитых государств для обнаружения теплоконтрастных целей (живой силы и техники) в любое время суток, несмотря на применяемые противником обычные средства оптической маскировки в видимом диапазоне (камуфляж). Из специализированного разведывательного прибора тепловизор стал важным элементом прицельных комплексов ударной армейской авиации (вертолетов) и бронетехники. Применяются и тепловизионные прицелы для ручного стрелкового оружия, хотя в силу высокой цены широкого распространения они пока не получили.

О таком устройстве, как тепловизор, сегодня слышал, наверное, каждый. Исключение, пожалуй, составят лишь маленькие дети. Другое дело, что тех, кто видел этот прибор «живьем», не так много, тех же, кто держал его в руках, - и подавно. Но ведь есть и такие, кто не просто держал, а создал собственный «домашний» вариант тепловизора. Впрочем, к какой бы категории вы ни относили себя, наша статья будет в любом случае вам интересной. Непосвященные смогут уяснить принцип работы тепловизора, а бывалые и асы - открыть для себя новые возможности. Но давайте обо всем по порядку.

Прибор тепловизор, являясь устройством для измерения температур поверхностей бесконтактным методом, способен существенно облегчить жизнь представителям многих профессий. Изначально изобретенный для военных целей, этот достаточно сложный и дорогостоящий прибор сегодня успешно применяется в большинстве сфер деятельности человека. Например, в промышленности - для контроля за тепловыми изменениями при технологических процессах; в медицине - для диагностики заболеваний; при охоте на птиц и зверей; в строительстве - для определения зон утечки тепла или, наоборот, мест прокладки труб. И это далеко не полный послужной список данного прибора.

Виды устройств

Тепловизор — настолько востребованное и многофункционально устройство, что имеет два технологических варианта конструкции:

  • Стационарный. Устройства этой категории предназначены для использования на промышленных предприятиях с целью контроля за технологическими процессами. Система азотного охлаждения - достаточно частое приспособление, которым оборудован подобный тепловизор. Характеристики его рабочих температур весьма внушительны: от −40 до +2000 °C. В основе данных систем лежат, как правило, устройства, собранные на матрицах полупроводниковых фотоприемников.
  • Переносной (портативный). Инновационные разработки позволили отойти от использования громоздкого охлаждающего оборудования, перейдя к производству тепловизоров на базе неохлаждаемых кремниевых микроболометров. Таким приборам присущи все достоинства своих предшественников, к которым относится, например, малый шаг температуры при измерении (0,1 °C). Возможно также применение тепловизора данного класса для сложных оценочных работ, требующих одновременно простоты использования и портативности устройства. Многие портативные тепловизоры обладают возможностью подключения к ПК для оперативной обработки данных с них.

Применение тепловизора в той или иной сфере налагает определенные отпечатки на требуемые эксплуатационные характеристики данного устройства. Поэтому перед покупкой этого прибора вами должны быть оценены условия его использования. Поможет в этом инструкция. Тепловизор,приобретенный без должного ознакомления с правилами эксплуатации, может совершенно не подходить под ваши нужды.Например, тепловизоры, применяемые при охоте, должны иметь ударопрочный корпус из легкого сплава со степенью защиты не ниже IP54.

Желательно, чтобы это была моноблочная конструкция с индикацией на видоискателе и ЖК-экране. И видимая дальность охотничьих тепловизоров должна достигать 1500 м, тогда как в строительной сфере такие требования к тепловизорам не предъявляются.

Принцип работы тепловизора

Работа тепловизора основана на способности любого объекта генерировать тепловое излучение (ИК-излучение), интенсивность которого напрямую зависит от температуры объекта. Тепловизор фиксирует ИК-лучи на больших расстояниях, преобразуя их в удобный для восприятия человеком вид. Разность тепловых излучений различных объектов и позволяет видеть рельефы в темноте, а также холодные или горячие потоки. При этом красным цветом обозначаются максимально высокотемпературные участки, черным или синим — низкотемпературные.

Следует понимать принципиальное различие между такими устройствами, как тепловизор и прибор ночного видения. Разница состоит в их способности видеть в темноте. Тепловизор передает собственное ИК-излучение объектов, в то время как прибор ночного видения - отраженное и усиленное излучение-подсветку от других объектов. То есть выполнение функций прибора ночного видения тепловизором возможно, а вот построение теплокарты с помощью прибора ночного видения - нет.

Алгоритм работы тепловизора состоит из трех этапов:

  1. Фиксации ИК излучения.
  2. Преобразования его в температурные величины.
  3. Формирования термограммы - теплового изображения объекта, отображающего распределение температуры на поверхностях объектов.

Причем действия эти происходят мгновенно.

Несмотря на достаточно сложный принцип работы тепловизора, схема портативного приспособления не является слишком громоздкой.

Однако следует учитывать, что для достаточной четкости изображения на экране требуется наличие специальной оптики, с примесью германия. Именно этим и продиктована дороговизна профессиональных устройств. Их стоимость исчисляется тысячами, а иногда и десятками тысяч долларов. Согласитесь, сумма немаленькая.

Огромные возможности тепловизоров уже давно воодушевляют многих молодых людей на идею собрать это устройство собственноручно. И, к счастью, способы, позволяющие смастерить тепловизор своими руками и избежать столь внушительных трат, существуют. Конечно, если не предполагается использование прибора в профессиональных целях.

Три варианта реализации тепловизора в домашних условиях мы приводим ниже - выбирайте, какой вам понравится больше. А датчики для тепловизоров и другие элементы устройства можно купить в готовом виде.

Вариант № 1. Тепловизор своими руками из фотоаппарата

Этот метод основан на том факте, что изначально матрицы всех фотоаппаратов великолепно фиксируют инфракрасное излучение, которое, собственно, и необходимо для работы тепловизора. Другое дело, что производители фототехники делают так, чтобы устройства видели то же самое, что и человеческий глаз. Для этого перед матрицей ставится специальный фильтр, поглощающий или отражающий практически все ИК-излучение - «тепловое зеркало», или hot mirror. Благодаря этому фильтру матричная кривая чувствительности становится аналогичной кривой чувствительности человеческого глаза. Поэтому сделать тепловизор своими руками из фотоаппарата просто, нужно лишь выполнить два действия — вынуть из фотоаппарата тепловые фильтры, а вместо них установить фильтр видимого спектра. Впрочем, как показывает практика, последнее не всегда обязательно.

Сфера применения самодельного тепловизора

Возможно ли использование тепловизора, изготовленного таким способом, в домашних нуждах? Вполне. Будет ли пригоден такой тепловизор для строительства или, к примеру, при охоте? Вполне вероятно. Во всяком случае, любителям отдыха на природе такое устройство точно придется по душе. С его помощью вы сможете контролировать приближение животных к вашему лагерю в ночное время, а также в тумане или клубах пыли проводить поиски заблудившихся членов группы.

Если в вашем распоряжении есть ненужная зеркалка, около 40 $ на ИК-фильтр, желание и возможность разобрать фотоаппарат, то попробовать этот вариант, конечно же, стоит.

Вариант № 2. Тепловизор своими руками с помощью инфракрасного термометра и платы Arduino

Идея этого метода очень проста. Чтоб создать тепловизор своими руками потребуется недорогой инфракрасный термометр — это такой прибор, который умеет измерять температуру конкретной точки пространства на небольшом расстоянии, и плата Arduino, через которую мы подключим его к RGB-светодиодам из какого-нибудь фонаря.

Плата Arduino представляет собой программно-аппаратное средство, предназначенное для построения непрофессиональными пользователями простых систем из сферы автоматики и робототехники.

Запрограммируем систему так, чтоб фонарный свет окрашивался в разные цвета в зависимости от показаний термометра. Сделаем традиционно, чтоб высокой температуре соответствовал красный цвет, а низкой — синий. Таким образом, направляя фонарь со встроенным термометром на любой объект, мы автоматически подсвечиваем этот объект соответствующим цветом, в зависимости от его температуры. Если к данному набору добавить еще и фотоаппарат, то вы не просто сможете видеть в цвете температуры поверхностей окружающих вас предметов, но и получите изображения, ничем не хуже тех, что позволяют увидеть даже самые дорогие тепловизоры.

Где можно использовать такой тепловизор?

Конечно, подобные устройства не такие, как тепловизоры для охоты. Своими руками сложно сделать мощный аппарат. Но представленный вариант вполне сможет пригодиться для домашних нужд, тем более что стоимость данной самодельной конструкции не превышает 50 долларов.

Вариант № 3. Усовершенствованный самодельный тепловизор для съемки статических объектов

Своим появлением на свет разработка обязана двум немецким студентам Максу Риттеру и Марку Коулу. Эти юные жители г. Миндельхейма изобрели довольно-таки простое в изготовлении устройство и получили за него награду в 2010 году на научно-техническом форуме.

Устройство состоит из двух сервоприводов (для горизонтального и вертикального перемещения), контроллера Arduino (ответственного за обработку сигналов и передачи данных в ПК), модуля бесконтактного датчика температур (например, MLX90614-BCI), лазерного модуля или лазерной указки (будет указывать на зону сканирования), корпуса и веб-камеры. Также понадобятся два резистора по 4.7 кОм и штатив.

Камере отводится роль своеобразного видоискателя области сканирования, а также источника исходной картинки, с этой ролью способна справиться любая дешевая веб-камера (чем она меньше, тем лучше).

Данные, генерируемые датчиком, могут считываться с помощью шин SMBus и ШИМ. Наш случай допускает также использование датчика с индексами BCI. Питание 3V. Индексом BCI обозначается тип форм-фактора с насадкой, обеспечивающей узкий угол зрения в 5°.

Сборка

  • Размещаем плату Arduino в корпусе с батарейным отсеком.
  • Закрепляем серводвигатель при помощи суперклея или эпоксидки в переднем пустом пространстве платы.
  • Размещаем второй серводвигатель в поворотном устройстве и закрепляем всю конструкцию.
  • Подключаем инфракрасный термометр к Arduino, подсоединив для этого Ground к GND, SDA к PIN4 VIN к 3.3V и SCL к PIN5. Также установим резистор 4.7 кОм, подключив SDA к 3.3V и SCL к 3.3V.
  • Производим подключение Laser Card или же лазерной указки. Это для того, чтобы отслеживать, с какого места в настоящий момент происходит сканирование.
  • Устанавливаем веб-камеру так, чтобы ее направление точно совпадало с направлением ИК-датчика и лазера.

И все. Вы сделали тепловизор своими руками!

Для чего сгодится

Процесс сканирования объекта и выдача тепловой карты занимает около минуты, ведь датчик сканирует будущую картинку точку за точкой. Это, конечно же, абсолютно бесполезно для процесса охоты. Однако отличным помощником будет данный самодельный тепловизор для строительства и других ремонтных работ. Например, его можно использовать в качестве метода проверки на предмет нагрева электрических соединений или силовых сборок. Устройство позволяет не только видеть теплограмму, но и количественные величины температур.

Помимо медленной работы тепловизор имеет еще один недостаток - жесткую привязку к ПК, что делает его слабомобильным. Но в некоторых случаях возможности устройства и его стоимость вполне себя оправдывают - за все комплектующие вам придется выложить не более 200 у. е.

Выводы

Из описанных нами вариантов сборки самодельных тепловизоров напрашиваются два вывода:

  1. Смастерить тепловизор самостоятельно вполне возможно.
  2. Самодельный тепловизор имеет очень узкую область применения.

Поэтому если тепловизор вам необходим в глобальных целях, стоит отложить эксперименты и потратиться на высококачественную технику. Всем же, кто просто любит конструировать и кого вполне устроят возможности самоделок, можно дать совет - собирайте, экспериментируйте, и вполне может быть, что вам удастся переплюнуть достижения описанных нами самодельных вариантов и создать гораздо более совершенные тепловизоры для охоты своими руками. Дерзайте!

Тем, кто не особо дружит с паяльником и отверткой, но очень любит проводить время на природе, а также тем, кому в профессиональных целях может пригодиться визуализация температурных свойств предметов в диапазоне от 0 до 100 °C, рекомендуется обратить внимание на готовое полупрофессиональное оборудование. Например, на смартфоны с тепловизором Flir One.

Эти устройства вполне могут сослужить службу охотникам и путешественникам-экстремалам, поскольку удобны, мобильны, способны работать при температуре от 0 до 45 °C и высокой атмосферной влажности. И при этом стоимость такого устройства не намного отличается от затрат на всевозможные самоделки.

О таком устройстве, как тепловизор, сегодня слышал, наверное, каждый. Исключение, пожалуй, составят лишь маленькие дети. Другое дело, что тех, кто видел этот прибор «живьем», не так много, тех же, кто держал его в руках, - и подавно. Но ведь есть и такие, кто не просто держал, а создал собственный «домашний» вариант тепловизора. Впрочем, к какой бы категории вы ни относили себя, наша статья будет в любом случае вам интересной. Непосвященные смогут уяснить принцип работы тепловизора, а бывалые и асы - открыть для себя новые возможности. Но давайте обо всем по порядку.

Прибор тепловизор, являясь устройством для измерения температур поверхностей бесконтактным методом, способен существенно облегчить жизнь представителям многих профессий. Изначально изобретенный для военных целей, этот достаточно сложный и дорогостоящий прибор сегодня успешно применяется в большинстве сфер деятельности человека. Например, в промышленности - для контроля за тепловыми изменениями при технологических процессах; в медицине - для диагностики заболеваний; при охоте на птиц и зверей; в строительстве - для определения зон утечки тепла или, наоборот, мест прокладки труб. И это далеко не полный послужной список данного прибора.

Виды устройств

Тепловизор — настолько востребованное и многофункционально устройство, что имеет два технологических варианта конструкции:

  • Стационарный. Устройства этой категории предназначены для использования на промышленных предприятиях с целью контроля за технологическими процессами. Система азотного охлаждения - достаточно частое приспособление, которым оборудован подобный тепловизор. Характеристики его рабочих температур весьма внушительны: от −40 до +2000 °C. В основе данных систем лежат, как правило, устройства, собранные на матрицах полупроводниковых фотоприемников.
  • Переносной (портативный). Инновационные разработки позволили отойти от использования громоздкого охлаждающего оборудования, перейдя к производству тепловизоров на базе неохлаждаемых кремниевых микроболометров. Таким приборам присущи все достоинства своих предшественников, к которым относится, например, малый шаг температуры при измерении (0,1 °C). Возможно также применение тепловизора данного класса для сложных оценочных работ, требующих одновременно простоты использования и портативности устройства. Многие портативные тепловизоры обладают возможностью подключения к ПК для оперативной обработки данных с них.

Применение тепловизора в той или иной сфере налагает определенные отпечатки на требуемые эксплуатационные характеристики данного устройства. Поэтому перед покупкой этого прибора вами должны быть оценены условия его использования. Поможет в этом инструкция. Тепловизор,приобретенный без должного ознакомления с правилами эксплуатации, может совершенно не подходить под ваши нужды.Например, тепловизоры, применяемые при охоте, должны иметь ударопрочный корпус из легкого сплава со степенью защиты не ниже IP54.

Желательно, чтобы это была моноблочная конструкция с индикацией на видоискателе и ЖК-экране. И видимая дальность охотничьих тепловизоров должна достигать 1500 м, тогда как в строительной сфере такие требования к тепловизорам не предъявляются.

Принцип работы тепловизора

Работа тепловизора основана на способности любого объекта генерировать тепловое излучение (ИК-излучение), интенсивность которого напрямую зависит от температуры объекта. Тепловизор фиксирует ИК-лучи на больших расстояниях, преобразуя их в удобный для восприятия человеком вид. Разность тепловых излучений различных объектов и позволяет видеть рельефы в темноте, а также холодные или горячие потоки. При этом красным цветом обозначаются максимально высокотемпературные участки, черным или синим — низкотемпературные.

Следует понимать принципиальное различие между такими устройствами, как тепловизор и прибор ночного видения. Разница состоит в их способности видеть в темноте. Тепловизор передает собственное ИК-излучение объектов, в то время как прибор ночного видения - отраженное и усиленное излучение-подсветку от других объектов. То есть выполнение функций прибора ночного видения тепловизором возможно, а вот построение теплокарты с помощью прибора ночного видения - нет.

Алгоритм работы тепловизора состоит из трех этапов:

  1. Фиксации ИК излучения.
  2. Преобразования его в температурные величины.
  3. Формирования термограммы - теплового изображения объекта, отображающего распределение температуры на поверхностях объектов.

Причем действия эти происходят мгновенно.

Несмотря на достаточно сложный принцип работы тепловизора, схема портативного приспособления не является слишком громоздкой.

Однако следует учитывать, что для достаточной четкости изображения на экране требуется наличие специальной оптики, с примесью германия. Именно этим и продиктована дороговизна профессиональных устройств. Их стоимость исчисляется тысячами, а иногда и десятками тысяч долларов. Согласитесь, сумма немаленькая.

Огромные возможности тепловизоров уже давно воодушевляют многих молодых людей на идею собрать это устройство собственноручно. И, к счастью, способы, позволяющие смастерить тепловизор своими руками и избежать столь внушительных трат, существуют. Конечно, если не предполагается использование прибора в профессиональных целях.

Три варианта реализации тепловизора в домашних условиях мы приводим ниже - выбирайте, какой вам понравится больше. А датчики для тепловизоров и другие элементы устройства можно купить в готовом виде.

Вариант № 1. Тепловизор своими руками из фотоаппарата

Этот метод основан на том факте, что изначально матрицы всех фотоаппаратов великолепно фиксируют инфракрасное излучение, которое, собственно, и необходимо для работы тепловизора. Другое дело, что производители фототехники делают так, чтобы устройства видели то же самое, что и человеческий глаз. Для этого перед матрицей ставится специальный фильтр, поглощающий или отражающий практически все ИК-излучение - «тепловое зеркало», или hot mirror. Благодаря этому фильтру матричная кривая чувствительности становится аналогичной кривой чувствительности человеческого глаза. Поэтому сделать тепловизор своими руками из фотоаппарата просто, нужно лишь выполнить два действия — вынуть из фотоаппарата тепловые фильтры, а вместо них установить фильтр видимого спектра. Впрочем, как показывает практика, последнее не всегда обязательно.

Сфера применения самодельного тепловизора

Возможно ли использование тепловизора, изготовленного таким способом, в домашних нуждах? Вполне. Будет ли пригоден такой тепловизор для строительства или, к примеру, при охоте? Вполне вероятно. Во всяком случае, любителям отдыха на природе такое устройство точно придется по душе. С его помощью вы сможете контролировать приближение животных к вашему лагерю в ночное время, а также в тумане или клубах пыли проводить поиски заблудившихся членов группы.

Если в вашем распоряжении есть ненужная зеркалка, около 40 $ на ИК-фильтр, желание и возможность разобрать фотоаппарат, то попробовать этот вариант, конечно же, стоит.

Вариант № 2. Тепловизор своими руками с помощью инфракрасного термометра и платы Arduino

Идея этого метода очень проста. Чтоб создать тепловизор своими руками потребуется недорогой инфракрасный термометр — это такой прибор, который умеет измерять температуру конкретной точки пространства на небольшом расстоянии, и плата Arduino, через которую мы подключим его к RGB-светодиодам из какого-нибудь фонаря.

Плата Arduino представляет собой программно-аппаратное средство, предназначенное для построения непрофессиональными пользователями простых систем из сферы автоматики и робототехники.

Запрограммируем систему так, чтоб фонарный свет окрашивался в разные цвета в зависимости от показаний термометра. Сделаем традиционно, чтоб высокой температуре соответствовал красный цвет, а низкой — синий. Таким образом, направляя фонарь со встроенным термометром на любой объект, мы автоматически подсвечиваем этот объект соответствующим цветом, в зависимости от его температуры. Если к данному набору добавить еще и фотоаппарат, то вы не просто сможете видеть в цвете температуры поверхностей окружающих вас предметов, но и получите изображения, ничем не хуже тех, что позволяют увидеть даже самые дорогие тепловизоры.

Где можно использовать такой тепловизор?

Конечно, подобные устройства не такие, как тепловизоры для охоты. Своими руками сложно сделать мощный аппарат. Но представленный вариант вполне сможет пригодиться для домашних нужд, тем более что стоимость данной самодельной конструкции не превышает 50 долларов.

Вариант № 3. Усовершенствованный самодельный тепловизор для съемки статических объектов

Своим появлением на свет разработка обязана двум немецким студентам Максу Риттеру и Марку Коулу. Эти юные жители г. Миндельхейма изобрели довольно-таки простое в изготовлении устройство и получили за него награду в 2010 году на научно-техническом форуме.

Устройство состоит из двух сервоприводов (для горизонтального и вертикального перемещения), контроллера Arduino (ответственного за обработку сигналов и передачи данных в ПК), модуля бесконтактного датчика температур (например, MLX90614-BCI), лазерного модуля или лазерной указки (будет указывать на зону сканирования), корпуса и веб-камеры. Также понадобятся два резистора по 4.7 кОм и штатив.

Камере отводится роль своеобразного видоискателя области сканирования, а также источника исходной картинки, с этой ролью способна справиться любая дешевая веб-камера (чем она меньше, тем лучше).

Данные, генерируемые датчиком, могут считываться с помощью шин SMBus и ШИМ. Наш случай допускает также использование датчика с индексами BCI. Питание 3V. Индексом BCI обозначается тип форм-фактора с насадкой, обеспечивающей узкий угол зрения в 5°.

Сборка

  • Размещаем плату Arduino в корпусе с батарейным отсеком.
  • Закрепляем серводвигатель при помощи суперклея или эпоксидки в переднем пустом пространстве платы.
  • Размещаем второй серводвигатель в поворотном устройстве и закрепляем всю конструкцию.
  • Подключаем инфракрасный термометр к Arduino, подсоединив для этого Ground к GND, SDA к PIN4 VIN к 3.3V и SCL к PIN5. Также установим резистор 4.7 кОм, подключив SDA к 3.3V и SCL к 3.3V.
  • Производим подключение Laser Card или же лазерной указки. Это для того, чтобы отслеживать, с какого места в настоящий момент происходит сканирование.
  • Устанавливаем веб-камеру так, чтобы ее направление точно совпадало с направлением ИК-датчика и лазера.

И все. Вы сделали тепловизор своими руками!

Для чего сгодится

Процесс сканирования объекта и выдача тепловой карты занимает около минуты, ведь датчик сканирует будущую картинку точку за точкой. Это, конечно же, абсолютно бесполезно для процесса охоты. Однако отличным помощником будет данный самодельный тепловизор для строительства и других ремонтных работ. Например, его можно использовать в качестве метода проверки на предмет нагрева электрических соединений или силовых сборок. Устройство позволяет не только видеть теплограмму, но и количественные величины температур.

Помимо медленной работы тепловизор имеет еще один недостаток - жесткую привязку к ПК, что делает его слабомобильным. Но в некоторых случаях возможности устройства и его стоимость вполне себя оправдывают - за все комплектующие вам придется выложить не более 200 у. е.

Выводы

Из описанных нами вариантов сборки самодельных тепловизоров напрашиваются два вывода:

  1. Смастерить тепловизор самостоятельно вполне возможно.
  2. Самодельный тепловизор имеет очень узкую область применения.

Поэтому если тепловизор вам необходим в глобальных целях, стоит отложить эксперименты и потратиться на высококачественную технику. Всем же, кто просто любит конструировать и кого вполне устроят возможности самоделок, можно дать совет - собирайте, экспериментируйте, и вполне может быть, что вам удастся переплюнуть достижения описанных нами самодельных вариантов и создать гораздо более совершенные тепловизоры для охоты своими руками. Дерзайте!

Тем, кто не особо дружит с паяльником и отверткой, но очень любит проводить время на природе, а также тем, кому в профессиональных целях может пригодиться визуализация температурных свойств предметов в диапазоне от 0 до 100 °C, рекомендуется обратить внимание на готовое полупрофессиональное оборудование. Например, на смартфоны с тепловизором Flir One.

Эти устройства вполне могут сослужить службу охотникам и путешественникам-экстремалам, поскольку удобны, мобильны, способны работать при температуре от 0 до 45 °C и высокой атмосферной влажности. И при этом стоимость такого устройства не намного отличается от затрат на всевозможные самоделки.

Использование тепловизора для наглядного представления распределения температур по объекту применяется в различных сферах. Одним из самых известных методов его использования является . С ее помощью удается установить источники потери тепла на ограниченных участках, а так же на больших площадях. Она определяет такие источники как ошибки в теплоизоляции, тепловые мостики, недостаточная плотность изоляции, а также коэффициент звукоизоляции здания. При помощи современных тепловизоров можно самым точным образом установить истинное энергетическое состояние здания на данный момент.

Для расчета теплопроизводительности здания замеры предпочтительней проводить в холодное время года при работающей системе отопления и желательно при минимальной температуре окружающей среды. Термография зданий показывает распределение температуры в данный момент по поверхности определенной строительной конструкции, на которую влияют различные внешние факторы. Термография позволяет контролировать строительный процесс, анализировать ситуацию на участках, где возникли проблемы,и используется по большей части в таких сферах как анализ строительной конструкции, реставрация, а также строительство зданий.

Принцип работы тепловизора

Тепловизор - это прибор для измерения различия температур на определенном участке, не требующий никаких дополнительных действий и мероприятий. Любой предмет температурой выше нуля градусов передает электромагнитное излучение. Если вычислить интенсивность этого излучения, можно выяснить абсолютную температуру. Инфракрасный приемник излучения является сердцем тепловизора. Он может перевести колебания излученияв графическое изображение и высчитать по нему температуру.

Так возникает спектрозональная картина, отражающая реальное распределение температур по различным частям строительной конструкции. Это форма изложения обычно называется тепловым изображением или термограммой. Обычно цвета распределяют таким образом, что более светлые (красный, желтый) цвета показывают более высокую температуру, а более темные (синий, зеленый) - низкую. Если этот метод используется для экспертизы отапливаемого или наоборот остывающего здания, то он называется термография здания.

Предпосылки для использования тепловизора

Основной предпосылкой для использования тепловизора является изменение в поступлении теплового потока под воздействием перепада или температур. Этот тепловой поток, проходя по различным локальным зонам с различной температурой,показывает различные температуры поверхностей строительной детали, которые зафиксированы тепловизором. Современные тепловизоры способны показывать разницу в температурах вплоть до сотых градуса в тепловом потоке, а значит определить слабые места в постройке при разнице внутренней температуры в помещении и окружающей среды в 10 градусов. В то время как для более простых и старых моделей была необходима разница в температурах в 20 градусов для точного определения разницы в температурах в элементах конструкции. Поэтому разрешающая способность тепловизора играет решающую роль в его использовании в течение года.

Помимо разницы температур на тепловизор могут оказывать влияние ветер, дождь или солнце, под воздействием которых здание может нагреваться либо остывать, а это влияет на точность результата. Поэтому временной интервал для измерения тепловизором строго ограничен: это либо раннее утро, либо поздний вечер в безветренную сухую погоду.

Наряду с внутренними заданными или созданными условиями определяются условия, при которых проводятся термографические исследования.

Достоверные результаты можно получить при следующих условиях:

    измерения проводятся рано утром или поздно вечером.

    разница внутренней температуры помещения и температуры окружающей среды составляет 10-20 градусов.

    погода сухая и скорость ветра не превышает 2 м/с.

    во внутренних помещениях поддерживается равномерная температура (внутри здания двери открыты, окна закрыты).

    возможно учет изменения интенсивности работы системы отопления, если это заложено.

Возможности и границы использования тепловизоров на практике

Как правило, замеры тепловизором можно проводить как снаружи, так и внутри здания. Оба метода имеют свои плюсы и минусы. Обычно для выбора оптимального расположения тепловизора для снятия показаний учитываются конструкция здания иусловия окружающей среды. Так, например, дома, оснащенные радиаторами, принято снимать с наружной стороны здания.

Термография внешних фасадов


Как правило, термография проводится для быстрого и наглядного определения тепловых мостиков и вреда, нанесенного внешнему фасаду влажностью. Зачастую таким образом можно проанализировать всю внешнюю поверхность здания. Позиция для максимально точного замера в этом случае варьируется и может быть скорректирована специальной теле- или широкоугольной оптикой. Однако в этом случае полученные данные будут скупыми и могут содержать искажения. Также надо учитывать холодное излучение,которое может отражаться от крыш и окон здания. В этом случае термограмма может быть заметно холоднее, чем состояние здания на самом деле.

Коррекция коэффициента излучения

Количественный анализ распределения температур не учитывает коэффициент излучения и фоновое излучение. При этом неважно делается ли анализ камерой на месте или впоследствии обрабатывается специальным программным обеспечением.

Коэффициент излучения как мера исчисления для материала оказывает на точность результата большое влияние.Чем больше разница между температурой объекта и температурой окружающей среды (фоновое излучение), и чем меньше коэффициент излучения, тем больше будет ошибок, если не провести коррекцию. Количественный анализ внешних стен требует четкого соблюдения и сбора данных об определенных условиях окружающей среды, а также учета релевантных параметров физического излучения. Поэтому рекомендуется учитывать температуру излучения окружающей среды, где расположено здание.

Типичные ошибки в интерпретации снимка

На практике чаще всего неправильно интерпретируются данные, полученные при анализе внешней части здания. Так дилетант воспринимает термограмму как цветную картинку, а не как сложный процесс измерения, и, как правило, слепо рассматривает лишь температуру внешней поверхности, не учитывая внешние помехи и термические эффекты, влияющие на здание.

Вот типичные ошибки при интерпретации снимков:

    при измерениях фасадов с внешней стороны - «никакие особенности не обнаружены»

    аккумуляция тепла на свесах крыш - «крыша плохо изолирована»

    холодные крыши и окна по причине отражения холодного излучения окружающей среды - «крыши и окна лучше изолированы, чем фасады»

    охлаждение фасада под влиянием дождя или ветра - «фасады лучше изолированы, чем другие детали»

    нагрев архитектурных элементов под воздействием солнечных лучей - «архитектурные элементы теряют много тепла»

    геометрически предопределенные тепловые мостики, такие как внутренние углы, чья излучающая площадь больше, чем принимающая (с внешними углами ситуация обратная) определяются как слабые места в постройке.

Для детального исследования элементовконструкции предпочтительней проводить внутреннюю термографию. Здесь нет никаких климатических влияний на обследуемую поверхность. Термические показатели, снятые внутри здания, более-менее соответствуют действительности. Крыши и фасады на предмет их изоляции и непроницаемости можно снимать только с внутренней стороны здания, так как с наружной стороны под воздействием воздушных потоков возможно возникновение ошибок.

Одним из наиболее часто встречающихся явлений, оказывающих вред зданию, являются . Это ограниченные места, которые в сравнении с окружающей их поверхностью имеют повышенную теплопередачу. Они являются не только причиной энергетических потерь, но также приводят к намоканию стен, а как следствие к появлению грибка. Так при определенных обстоятельствах поступающий к холодной архитектурной детали комнатный воздух может остыть до температуры «точки росы».

И вследствие конденсации влага поступает внутрь и приводит к образованию грибка.

Подобный эффект можно встретить при воздухопроницаемости особенно в штукатурке во внешних стенах облегченной конструкции. Теплый комнатный воздух из-за плохой изоляции архитектурных деталей уходит из помещения. При этом теплый воздух, который может содержать много водяного пара, может остыть до температуры процесса конденсации.Особенно большой вред подобное может нанести деревянным элементам конструкции. Проверку на герметичность поэтому, как правило, проводят внутри здания с открытыми внутренними дверями между помещениями.

Наряду с количественным исследованием при определенных условиях может быть проведено качественное термографическое исследование скрытых трубопроводов, утечек в системе отопления или состояния скрытых элементов конструкции. Приэтом используется тот факт, что различное тепловое сопротивление и теплоемкость оказывают влияние на прохождение тепла. Например, тот факт, являются ли объекты источникамитепла или источниками его утечки.

Тепловизорами называют приборы, которые исследуют поверхность или объект путем теплового излучения. Устройства преобразуют инфракрасные излучения, поступающие от объекта наблюдения, последовательно преобразуя из электрической формы в видимую картинку. Аппарат способен определить показатель температуры и характеристики температурного поля объекта, вступив с ним в непосредственный контакт.

Основу прибора составляет приемник инфракрасных излучений. Именно он отвечает за трансформацию сигнала в графическое изображение и определение температурного показателя путем вывода картинки на дисплей устройства. Форма, в которой подается результат измерений, является легко считываемой. Она понятна не только квалифицированным специалистам, но и пользователям, не обладающим узкоспециализированными и профессиональными знаниями в данной области.

Многообразие тепловизоров

Виды тепловизоров классифицируют в зависимости от выполняемых функций и их конструктивного исполнения. Оборудование позволяет решать задачи наблюдения за объектами и снятия измерений.

Наблюдательные виды тепловизоров способны создавать картинку в пределах инфракрасного излучения, являющимся видимым на цветовой шкале. Аппараты измерительного типа выполняют аналогичную функцию, но присваивают каждой точке светового сигнала значение температуры. Это позволяет пользователю визуально анализировать распределение температур на исследуемом участке.

В отдельную группу выделяют оборудование визуального типа. Такие пирометры дают возможность зрительно определить зоны с отклонениями от нормальной температуры.

Относительно недавно применение тепловизоров ограничивалось оборонной сферой. Сегодня, помимо военных ведомств, аппаратура востребована в строительной области и производственном направлении, где позволяет разрешить множество хозяйственных проблем. Производители выпускают типы тепловизоров, представленные в качестве самостоятельной единицы оборудования или составной части биноклей гражданского назначения и прочих оптических механизмов.

Наиболее часто тепловизоры классифицируют на 3 группы по их измерительному диапазону. Это позволяет выделить пирометры строительного, высокотемпературного и промышленного типов. Соответственно, данное деление определяет и применение тепловизоров. Строительное оборудование способно взаимодействовать с объектами, температура которых достигает 350 градусов Цельсия. Подобная аппаратура позволяет осуществлять бесконтактную диагностику строительных конструкций, оценивать качество теплоизоляции, выявлять слабые места изоляции и участки, через которые происходит утечка тепла.

У промышленных аппаратов верхняя температурная граница превосходит 350 градусов по шкале Цельсия. Уникальные способности приборов открывают возможности по диагностике электросетей и промышленных систем различного назначения.

Высокотемпературное оборудование способно фиксировать температуры, превышающие 1000 градусов по шкале Цельсия. Их применяют в процессе диагностики технологических процессов с крайне высокой степенью нагрева.

Сфера применения

Сегодня применение тепловизоров становится максимально обширным. Это вызвано способностью оборудования чутко реагировать на мельчайшие изменения температурных параметров, не различимых человеческому глазу. Главное условие работы техники заключается в излучении электромагнитных волн, которые исходят от исследуемого предмета. По интенсивности излучения оператор может определить, что за предмет он видит перед собой. Пирометр не восприимчив к посторонним помехам и не нуждается в непосредственном контакте с объектом исследования. При значительной дальности действия, оборудование не может быть обнаружено современными системами слежения. Это делает применение тепловизоров весьма востребованным.

В зависимости от назначения, типы тепловизоров подразделяют на:

  • диагностические;
  • военные;
  • морские;
  • медицинские;
  • научные;
  • мультисенсорные;
  • строительные;
  • для систем автоматики.

Диагностические пирометры позволяют выявлять проблемные участки путем анализа температурных показателей систем. Медицинская техника с интегрированными тепловизорами востребована при выявлении у пациентов различного рода заболеваний путем изучения показателей инфракрасного излучения. Морские пирометры способны анализировать инфракрасное изображение при критических погодных условиях.

Основное преимущество мультисенсорных приборов - возможность значительно повысить безопасность охраняемых объектов. Это позволяет включать их в состав современных систем обеспечения безопасности.

Пирометры научного типа позволяют решить обширный спектр задач. Модели могут принадлежать к числу охлаждаемых и не охлаждаемых. Выбор того или иного аппарата зависит от условий предстоящего эксперимента и результата, который необходимо получить пользователю. Строительная аппаратура востребована при обследовании конструкций зданий. Она позволяет моментально и с высокой точностью выявлять дефекты и неисправности.

В системах автоматизации принцип работы тепловизора позволяет вести мониторинг оборудования и контролировать состояние исследуемого объекта путем анализа разницы температурных показателей. Все чаще подобные приборы включают в состав систем контроля транспортных потоков, поскольку они показывают высокую эффективность при ведении круглосуточного наблюдения за перемещением автотранспорта и людей вне зависимости от условий видимости и уровня освещенности.

При охоте пирометры позволяют достоверно определить положение цели в условиях незначительной видимости. Все чаще подобное оборудование используют в аварийных службах с целью поиска утечек газа.

Модели пирометров

Учитывая, что принцип работы тепловизора един для всех видов оборудования, конструктивное исполнение аппаратуры может быть различным, в зависимости от поставленных задач и мощности оборудования. Помимо стационарных приборов, широкое распространение получают мобильные тепловизоры. Они характеризуются компактными размерами и простотой транспортировки.

Все приборы обладают памятью для хранения зафиксированных данных. Эту информацию можно перенести на персональный компьютер с целью последующей обработки. Возможности пирометров позволяют хранить данные в виде фото- и видеофайлов.

Похожие публикации