Профессионально о мебели. Информационный портал

Расчетная температура грунта при выборе тепловых насосов. Расчет теплового насоса для отопления дома. �?сточники тепловой энергии

В данной статье описаны варианты отопления дома и горячего водоснабжения с помощью теплового насоса, солнечного коллектора и кавитационного теплогенератора. Дана приближенная методика расчета теплового насоса и теплогенератора. Приведены примерная стоимость затрат для обогрева дома с помощью теплового насоса.

Тепловой насос. Конструкция обогрева дома

Чтобы понять его принцип действия можно посмотреть на обычный бытовой холодильник или кондиционер.

Современные тепловые насосы используют для своей работы низкопотенциальные источники тепла землю, грунтовые воды, воздух. И в холодильнике и в тепловом насосе действует один и тот же физический принцип (физики называют такой процесс циклом Карно ). Тепловой насос - устройство, которое «выкачивает» тепло из холодильной камеры и выбрасывает его на радиатор. Кондиционер «выкачивает» тепло из воздуха комнаты и выбрасывает ее на радиатор, но находящийся на улице. При этом к теплу, «высосанному» из комнаты, добавляется ещё тепло, в которое превратилась электрическая энергия, потреблённая электродвигателем кондиционера.

Число, выражающее отношение вырабатываемой тепловым насосом (кондиционером или холодильником) тепловой энергии к потребляемой им электрической энергии, специалисты по тепловым насосам называют «отопительным коэффициентом». В лучших тепловых насосах отопительный коэффициент достигает 3-4. То есть на каждый потреблённый электродвигателем киловатт-час электроэнергии вырабатывается 3-4 киловатт-часа тепловой энергии. (Один киловатт-час соответствует 860 килокалориям.) Этот коэффициент преобразования (отопительный коэффициент) напрямую зависит от температуры источника тепла, чем выше температура источника, тем больше коэффициент преобразования.

Кондиционер берёт эту тепловую энергию из воздуха улицы, а большие тепловые насосы «выкачивают» это дополнительное тепло обычно из водоема/подземных вод или грунта.

Хотя температура этих источников гораздо меньше, чем температура воздуха в обогреваемом доме, но и это низкотемпературное тепло грунта или воды, тепловой насос и превращает в высокотемпературное , необходимое для обогрева дома. Поэтому тепловые насосы называют ещё «трансформаторами тепла». (процесс превращения см. ниже)

Примечание: Тепловые насосы не только согревают дома, но и остужают воду в реке, из которой выкачивают тепло. А в наше время, когда реки слишком перегреты промышленными и бытовыми стоками, охлаждать реку очень полезно для жизни в ней живых организмов и рыбы. Чем ниже температура воды, тем больше в ней может раствориться кислорода, необходимого для рыбы. В тёплой воде рыба задыхается, а в холодной блаженствует.Поэтому тепловые насосы очень перспективны в деле спасения окружающей среды от "теплового загрязнения ".

Но установка системы отопления с помощью тепловых насосов пока слишком дорога, потому что требуются большое количество земляных работ плюс расходных материалов, например, труб для создания коллектора/теплообменника.

Так же стоит помнить что в тепловых насосах, как и в обычных холодильниках, используется компрессор, сжимающий рабочее тело - аммиак или фреон. На фреоне тепловые насосы работают лучше, но фреон уже запрещён к применению из-за того, что он, попадая в атмосферу, выжигает в её верхних слоях озон, защищающий Землю от ультрафиолетовых лучей Солнца.

И все-таки мне кажется, что будущее за тепловыми насосами. Но их, никто пока не производит массово. Почему? Не трудно догадаться.

Если появляется альтернативный источник дешевой энергии, то куда девать добываемый газ, нефть и уголь, кому его продавать. А на что списывать многомиллиардные убытки от взрывов на шахтах и рудниках.

Принципиальная схема обогрева дома с помощью теплового насоса

Принцип действия теплового насоса

В качестве источника низкопотенциального тепла может выступать наружный воздух, имеющий температуру от -15 до +15°С, воздух отводимый из помещения с температурой 15-25°С, подпочвенные (4-10°С) и грунтовые (более 10°C) воды, озерная и речная вода (0-10°С), поверхностный (0-10°С) и глубинный (более 20 м) грунт (10°С). В Нидерландах, например, в городе Херлен (Heerlen) для этих целей используется затопленная шахта. Вода, наполняющая старую шахту, на уровне 700 метров имеет постоянную температуру в 32°C.

В случае использования в качестве источника тепла атмосферного или вентиляционного воздуха, система отопления работает по схеме «воздух-вода». Насос может быть расположен внутри или снаружи помещения. Воздух подается в его теплообменник с помощью вентилятора.

Если в качестве источника тепла используются грунтовые воды, то система работает по схеме «вода-вода». Вода подается из скважины с помощью насоса в теплообменник насоса, а после отбора тепла, сбрасывается либо в другую скважину, либо в водоем. В качестве промежуточного теплоносителя можно использовать антифриз или тосол. Если в качестве источника энергии выступает водоем, на его дно укладывается петля из металлопластиковой или пластиковой трубы. По трубопроводу циркулирует раствор гликоля (антифриз) или тосола который через теплообменник теплового насоса передает тепло фреону.

При использовании в качестве источника тепла грунта, система работает по схеме «грунт-вода». Возможны два варианта устройства коллектора - вертикальный и горизонтальный.

  • При горизонтальном расположении коллектора, металлопластиковых трубы укладывают в траншеи глубиной 1,2-1,5 м или в виде спиралей в траншеи глубиной 2-4 м. Такой способ укладки позволяет значительно уменьшить длину траншей.


Схема теплового насоса при горизонтальном коллекторе со спиральной укладкой труб

1 - тепловой насос; 2 - трубопровод, уложенный в земле; 3 - бойлер косвенного нагрева; 4 - система отопления «теплый пол»; 5 - контур подачи горячей воды.

Однако при укладке спиралью сильно увеличивается гидродинамическое сопротивление, что приводит к дополнительным затратам на прокачку теплоносителя, так же сопротивление увеличивается по мере увеличения длины труб.

  • При вертикальном расположении коллектора трубы укладывают в вертикальные скважины на глубину 20-100 м.


Схема вертикального зонда


Фото зонда в бухте


Установка зонда в скважину

Расчет горизонтального коллектора теплового насоса

Расчет горизонтального коллектора теплового насоса.

q - удельный теплосъем (с 1 м пог. трубы).

  • сухой песок - 10 Вт/м,
  • сухая глина - 20 Вт/м,
  • влажная глина - 25 Вт/м,
  • глина с большим содержанием воды - 35 Вт/м.

Между прямой и обратной петлей коллектора появляется разность температур теплоносителя.

Обычно для расчета ее принимают равной 3°С. Недостатком такой схемы является то, что на участке над коллектором не желательно возводить строений, чтобы тепло земли пополнялось за счет солнечной радиации. Оптимальная дистанция между трубами считается 0,7-0,8 м. При этом длина одной траншеи выбирается от 30 до 120 м.

Пример расчета теплового насоса

Я приведу примерный расчет теплового насоса для нашего экодома, описанного в статье .

Считается, что для обогрева дома с высотой потолка 3 м, необходимо расходовать 1 кВт. Тепловой энергии на 10 м2 площади. При площади дома 10х10м=100 м2, необходимо 10кВт тепловой энергии.

При использовании теплого пола, температура теплоносителя в системе, должна быть 35°С, а минимальная температура теплоносителя - 0°С.

Таблица 1. Данные теплового насоса Thermia Villa.

Для обогрева здания нужно выбирать тепловой насос мощностью 15,6 кВт (ближайший больший типоразмер), расходующий на работу компрессора 5 кВт. Выбираем по типу грунта теплосъем с поверхностного слоя грунта. Для (влажной глины) q равняется 25 Вт/м.

Рассчитаем мощность теплового коллектора:

Qo=Qwp-P, где

Qo - мощность теплового коллектора , кВт;

Qwp - мощность теплового насоса , кВт;

P - электрическая мощность компрессора , кВт.

Требуемая тепловая мощность коллектора составит:

Qo=15,6-5=10,6 кВт;

Теперь определим суммарную длину труб:

L=Qo/q, где q - удельный (с 1 м. пог. трубы) теплосъем, кВт/м.

L=10,6/0,025 = 424 м.

Для организации такого коллектора потребуется 5 контуров длиной по 100 м. Исходя из этого, определим необходимую площадь участка для укладки контура.

A=Lхda, где da - расстояние между трубами (шаг укладки), м.

При шаге укладки 0,75 м необходимая площадь участка составит:

А=500х0,75=375 м2.

Расчет вертикального коллектора

При выборе вертикального коллектора, бурят скважины глубиной от 20 до 100 м. В них погружаются U-образные металлопластиковые или пластиковые трубы. Для этого в одну скважину вставляется две петли, которые заливается цементным раствором. Удельный теплосъем такого коллектора составляет 50 Вт/м.

Для более точных расчетов применяют следующие данные:

  • сухие осадочные породы - 20 Вт/м;
  • каменистая почва и насыщенные водой осадочные породы - 50 Вт/м;
  • каменные породы с высокой теплопроводностью - 70 Вт/м;
  • подземные воды - 80 Вт/м.

На глубинах более 15 м, температура грунта составляет примерно +10°С. Необходимо учитывать, что расстояние между скважинами должно быть больше 5 м. Если в грунте существуют подземные течения, то скважины необходимо бурить перпендикулярной потоку.

Пример: L=Qo/q=10,6/0,05=212 м.

Таким образом, при удельном теплосъеме вертикального коллектора 50 Вт/м и требуемой мощности 10,6 кВт длина трубы L должна составить 212 м.

Для устройства коллектора необходимо пробурить три скважины глубиной по 75 м. В каждой из них размещаем по две петли из металлопластиковой трубы всего - 6 контуров по 150 м.

Работа теплового насоса при работе по схеме «Грунт-вода»

Трубопровод укладывается в землю. При прокачивании через него теплоносителя, последний нагревается до температуры грунта. Дальше по схеме вода поступает в теплообменник теплового насоса и отдает все тепло во внутренний контур теплового насоса.

Во внутренний контур теплонасоса закачан хладагент под давлением. В качестве хладагента используется фреон или его заменители, поскольку фреон разрушает озоновый слой атмосферы и запрещен к использованию в новых разработках. У хладагента низкая температура кипения и поэтому когда в испарителе резко снижается давление, он переходит из жидкого состояния в газ при низкой температуре.

После испарителя газообразный хладагент поступает в компрессор и сжимается компрессором. При этом он разогревается, и давление его повышается. Горячий хладагент поступает в конденсатор, где протекает теплообмен между ним и теплоносителем из обратного трубопровода. Отдавая свое тепло, хладагент охлаждается и переходит в жидкое состояние. Теплоноситель поступает в отопительную систему и снова охлаждаясь, передает свое тепло в помещение. Когда хладагент проходит через редукционный клапан ,его давление падает, и он снова переходит в жидкую фазу. После этого цикл повторяется.

В холодное время года теплонасос работает как обогреватель, а в жаркое время может использоваться для охлаждения помещения (при этом тепловой насос не подогревает, а охлаждает теплоноситель - воду. А охлажденная вода, в свою очередь может использоваться для охлаждения воздуха в помещении).

В общем случае, теплонасос представляет собой машину Карно, работающую в обратном направлении. Холодильник перекачивает тепло из охлаждаемого объема в окружающий воздух. Если поместить холодильник на улице, то, извлекая тепло из наружного воздуха и передавая его вовнутрь дома, то можно таким нехитрым способом, в какой-то степени, обогревать помещение.

Однако, как показывает практика, одного лишь теплового насоса для снабжения дома теплом и горячей водой недостаточно. Осмелюсь предложить оптимальную, на мой взгляд, схему отопления и горячего водоснабжения дома.


Предлагаемая схема снабжения дома теплом и горячей водой

1 - теплогенератор; 2 - солнечный коллектор; 3 - бойлер косвенного нагрева; 4 - тепловой насос; 5 - трубопровод в земле; 6 - циркуляционный блок гелиосистемы; 7 - радиатор отопления; 8 - контур подачи горячей воды; 9 - система отопления «теплый пол».

Данная схема предполагает одновременное использование трех источников тепла. Основную роль играет в ней теплогенератор (1), тепловой насос (4) и солнечный коллектор (2), которые служат вспомогательными элементами и способствуют снижению затрат потребляемой электроэнергии, как следствие, и повышению эффективности нагрева. Одновременное использование трех источников нагрева практически полностью исключает опасность размерзания системы .

Ведь вероятность выхода из строя одновременно и теплогенератора, и теплового насоса, и солнечного коллектора ничтожно мала. На схеме показаны два варианта обогрева помещений: радиаторы (7) и «теплый пол» (9). Это не значит, что надо использовать оба варианта, а лишь иллюстрирует возможность использования и одного и второго.

Принцип работы схемы отопления

Теплогенератор (1) подает нагретую воду в бойлер (3) и контур, состоящий из радиаторов отопления (7). Также в бойлер поступает нагретый теплоноситель от теплового насоса (4) и солнечного коллектора (2). Часть нагретой тепловым насосом воды также подается на вход теплогенератора. Смешиваясь с «обраткой» обогревающего контура, она повышает ее температуру. Это способствует более эффективному нагреву воды в кавитаторе теплогенератора. Нагретая и накопленная в бойлере вода подается в контур системы «теплый пол» (9) и контур подачи горячей воды (8).

Конечно, эффективность данной схемы будет неодинаковой в различных широтах. Ведь солнечный коллектор будет иметь наибольшую эффективность в летнее время года и, конечно же, в солнечную погоду. В наших широтах летом отапливать жилые помещения нет необходимости, поэтому теплогенератор можно вообще отключить. А так как лето у нас довольно жаркое и мы уже с трудом представляем свой быт без кондиционера, то тепловой насос предполагается включить на режим охлаждения. Естественно трубопровод, идущий от теплового насоса к бойлеру, будет перекрыт. Таким образом решать задачу горячего водоснабжения предполагается только с помощью гелиосистемы. И лишь в случае, если гелиосистема не справляется с этой задачей, использовать теплогенератор.

Как видим, схема довольно сложная и дорогостоящая. Общие приблизительные затраты в зависимости от выбранной схемы приведены ниже.

Затраты для вертикального коллектора:

  • Тепловой насос 6000 €;
  • Буровые работы 6000 €;
  • Эксплуатационные расходы (электричество): около 400 € в год.

Для горизонтального коллектора:

  • Тепловой насос 6000 €;
  • Буровые работы 3000 €;
  • Эксплуатационные расходы (электричество): около 450 евро в год.

Из крупных затрат потребуются расходы на закупку труб и на оплату труда рабочих.

Установка плоского солнечного коллектора (например, Vitosol 100-F и водонагревателя 300 л) обойдется в 3200 €.

Поэтому давайте, пойдем от простого к сложному. Сначала соберем простую схему отопления дома на основе теплогенератора, отладим ее, и постепенно будем добавлять в неё новые элементы, позволяющие увеличивать КПД установки.

Соберем систему отопления по схеме:


Схема теплоснабжения дома с использованием теплогенератора

1 - теплогенератор; 2 - бойлер косвенного нагрева; 3 - система отопления «теплый пол»; 4 - контур подачи горячей воды.

В итоге мы получили простейшую схему теплоснабжения дома, Я поделился своими мыслями для того, что бы побудить инициативных людей к развитию альтернативных источников энергии. Если у кого-то возникнут идеи или возражения по поводу написанного выше, давайте делиться мыслями, давайте накапливать знания и опыт в данном вопросе, и мы сбережем нашу экологию и сделаем жизнь немножко лучше.

Как видим здесь основной и единственный элемент, нагревающий теплоноситель, - это теплогенератор. Хотя в схеме и предусмотрен лишь один источник нагрева, она предусматривает возможность дальнейшего добавления дополнительных нагревательных устройств. Для этого предполагается использование бойлера косвенного нагрева с возможностью добавления или извлечения теплообменников.

Использование радиаторов отопления, имеющихся в схеме, изображенной на рисунке на один выше, не предполагается. Как известно система «теплый пол» более эффективно справляется с задачей обогрева помещений и позволяет экономить затрачиваемую энергию.

Внимание: Цены актуальны на 2009 год.

Поиск альтернативных источников, обеспечивающих энергией многие сферы человеческой деятельности, стал в последнее время актуальной задачей. Люди стремятся активнее использовать энергию солнца, ветра, источников воды, чтобы снизить затраты на решение проблем, связанных с теплоснабжением зданий. При этом, вопрос экологии имеет немаловажное значение, поскольку уменьшение вредных выбросов, загрязняющих атмосферу, важен как никогда.

Для создания благоприятных и комфортных условий проживания в жилищно-бытовом секторе в последние годы начали применять ветрогенераторы, солнечные коллекторы, экономные теплогенераторы одновременно с реализацией мероприятий, которые помогают повысить теплоизоляцию объекта теплоснабжения.

По мнению профессионалов, работающих в данной сфере, эффективным и экономичным мероприятием считается использование геотермальных источников тепловой энергии – специальных насосов. Их принципиальное устройство позволяет извлекать тепло из окружающей среды, трансформировать его и перемещать к месту применения (детальнее: " ").

Источниками энергии для тепловых насосов выступают вода, воздух, грунт, а процесс выработки тепла происходит по причине использования физических свойств некоторых веществ, называемых хладагентами. Они способны закипать даже при низких температурах.

Коэффициент производительности тепловых насосов, благодаря их характеристикам, достигает 3-5 единиц. Это означает, что при затрате в процессе работы 100 Вт электрической энергии прибором, потребители получают примерно 0,5 кВт мощности обогрева.

Порядок расчета тепловых насосов

Решение относительно выбора и расчет тепловых насосов, таких как на фото, представляет определенную сложность.

Результат вычислений зависит в основном от индивидуальных особенностей обогреваемого строения и состоит из нескольких этапов:

  1. Прежде всего, определяют потери тепла, происходящие через ограждающие конструкции постройки (к ним относятся окна, двери, стены, перекрытия). Для этого пользуются следующей формулой:

    Qок = Sх(tвн – tнар)х(1 + Σ β) х n / Rт (Вт), где
    S – сумма площадей всех ограждающих конструкций (м²);
    tвн – температура воздуха внутри здания (°С);
    tнар – температура воздуха снаружи (°С);

    n – коэффициент, отражающий влияние окружающего пространства на характеристики строения. Если помещение напрямую контактирует с наружной средой посредством перекрытия, то данный показатель равен 1. Когда объект имеет чердачные перекрытия, п равно 0,9. Если объект находится над подвальным помещением, коэффициент составляет 0,75 (детальнее: " ").
    β – коэффициент дополнительных теплопотерь, зависящий от типа постройки и его географического местоположения. Данный показатель, когда производится расчет теплового насоса, находится в интервале от 0,05 до 0,27;Rт – это показатель теплосопротивления, которое определяется по следующей формуле:Rт = 1/ α внутр + Σ (δі / λі) + 1/ α нар (м²х°С / Вт), где:α внутр – коэффициент, характеризующий тепловое поглощение внутренних поверхностей конструкций ограждения (Вт/ м²х°С);
    δі / λі – является расчетным показателем теплопроводности материалов, применяемых при строительстве;
    α нар – величина теплового рассеивания наружных поверхностей конструкций ограждения (Вт/ м²х°С);
  2. Далее, чтобы сделать расчет тепловых насосов, применяют формулу для определения суммарных потерь тепла строения:

    Qт.пот = Qок + Qи – Qбп, где:

    Qи - затраты на подогрев воздуха, который поступает через естественные неплотные места;
    Qбп - выделение тепла в результате работы бытовых приборов и человеческой деятельности.
  3. На данном этапе рассчитывают потребляемую тепловую энергию для каждого из объектов в течение года:Qгод = 24х0.63хQт. пот.х((dх (tвн - tнар.ср.)/ (tвн - tнар.)) кВт/час), где:
    tнар.ср – среднеарифметическое значение температур, которые фиксируются у наружного воздуха на протяжении всего отопительного периода;
    d – количество дней в отопительном сезоне.
  4. Затем нужно определить тепловую мощность, необходимую для разогрева воды в течение года, для чего используют выражение:

    Qгв = V х17 (кВт/час за календарный год), где
    V х17 – ежедневный объем нагрева воды до 50 °С.
  5. Суммарное потребление тепловой энергии определяют по формуле:

    Q = Qгв + Qгод (кВт/час за один год)

Преимущества использования теплового насоса, смотрите на видео:


После того, как завершен расчет теплового насоса, с учетом полученных данных приступают к выбору данного прибора для обеспечения теплоснабжения и горячего водоснабжения. При этом расчетную мощность определяют, исходя из выражения:
Qтн=1,1хQ, где:

1,1 является корректирующим коэффициентом, поскольку при возникновении критических температур возможно увеличение нагрузок на тепловой насос.

Когда сделаны необходимые расчеты, несложно подобрать подходящий для данного помещения тепловой насос, который обеспечит комфортный микроклимат в нем для людей, находящихся в комнате.


Геотермальный тепловой насос – самый экономичный способ обогрева и кондиционирования здания. Стоимость теплового насоса высока, но по мере увеличения спроса продолжает снижаться. Такая система идеальна для устройства теплого пола или нагрева радиаторов, рассчитанных на пониженную температуру теплоносителя. При ее проектировании главное – выбрать оптимальную мощность. В прошлой статье мы рассматривали самостоятельную сборку теплового насоса, однако для большинства более важной будет информация о том, как выбрать тепловой насос, сколько он стоит и что нужно учитывать?

Расчет мощности теплового насоса

Выбирая оборудование, необходимо учитывать теплопотери дома. Но это не всегда возможно либо очень дорого, а приобретение теплового насоса с большим запасом мощности сильно бьет по карману. Поэтому необходимо иметь резервный источник тепла на случай сильных морозов (например, дровяной котел). Это позволит выбирать тепловой насос с мощностью на треть меньше необходимой для компенсации потерь тепла при самой холодной погоде. Это оборудование может работать в любом из трех режимов: моноэлектрическом , моновалентном и бивалентном . Выбор режима зависит от уровня потребления.

Как рассчитать потребление тепла в зависимости от площади

Необходимо принять меры по утеплению здания и снижению теплопотерь до 40-80 Вт/м². Тогда для дальнейшего расчета примем следующие данные.

  1. Дом без теплоизоляции для обогрева требует 120 Вт/м².
  2. То же для строения с нормальной теплоизоляцией – 80 Вт/м².
  3. Новостройка с хорошей теплоизоляцией – около 50 Вт/м².
  4. Дом с энергосберегающими технологиями – 40 Вт/м².
  5. С пассивным потреблением энергии – 10 Вт/м².

Приведем примерный расчет теплового насоса, с помощью которого можно определить, как выбрать тепловой насос. Предположим, общая площадь всех отапливаемых помещений дома – 180 м². Теплоизоляция – хорошая и потребление тепла находится на уровне около 9 кВт. Тогда потери тепла составят: 180 × 50 = 9000 Вт. Временное отключение электроэнергии учитывается как 3 × 2 = 6 часов, но 2 часа не будем учитывать, так как здание инертно. Получаем окончательную цифру: 9000 Вт × 24 часа = 216 кВт час. Затем 216 кВт час / (18 час + 2 час) = 10, 8 кВт.
Таким образом, для обогрева данного дома необходим монтаж теплового насоса 10,8 кВт мощности. Чтобы упростить расчет, к значению потерь тепла нужно прибавить 20% (то есть 9000 Вт увеличить на 20%). Но здесь не учитываются расходы на нагрев воды для удовлетворения бытовых нужд.

Учет расхода энергии на подогрев воды

Для определения полной мощности насоса прибавим потребление энергии на подогрев воды (до t = 45 ˚С) из расчета 50л в сутки на человека. Таким образом, для четырех человек это будет равным 0,35 × 4 = 1,4 кВт. Отсюда полная мощность: 10,8 кВт + 1,4 кВт = 12,4 кВт.

Зависимость мощности от режима работы

Расчет теплового наноса должен выполняться с учетом режима работы.

  1. Моновалентный режим предполагает использование данного оборудования без вспомогательного (в качестве единственного). Для определения суммарной тепловой нагрузки следует учесть расходы на компенсацию аварийного отключения электроэнергии (максимум – на 2 часа по 3 раза в сутки).
  2. Моноэнергетический режим: при нем используется второй теплогенератор, для работы которого используется тот же вид энергии (электричество). Его подключают к системе при необходимости повысить температуру теплоносителя. Это может выполняться автоматически (монтаж теплового насоса предусматривает также установку контролирующих температуру датчиков и управляющего оборудования) или вручную. Но даже в условиях суровых зим холодных дней не так уж много и дополнительный теплогенератор приходится активировать не часто. Но такая организация отопления позволяет экономить на оборудовании: на 30% менее мощный теплонасос дешевле, но его будет достаточно для обеспечения теплом в течение 90% отопительного периода.
  3. При бивалентном режиме тепловому насосу помогает газовый котел или работающий на жидком топливе. Управляет процессом процессор, получающий информацию от температурных датчиков. Такое оборудование может устанавливаться в качестве дополнительного (во время реконструкции здания) к уже имеющемуся.


Обзор рынка тепловых насосов

Сегодня на рынке представлено различное оборудование такого типа. Стоит отметить геотермальные тепловые насосы австрийской компании OCHSNER : они совершенствуются производителем уже 35 лет. Хорошо зарекомендовала себя торговая марка Waterkotte : котлы с наружным покрытием этой марки имеют наибольшую производительность. Среди российского оборудования можно выделить производящееся под торговой маркой « HENK ».
Чтобы было легче представить предстоящие расходы, укажем стоимость основного оборудования и работ по его монтажу.

1. Тепловой насос с земляным зондом:

  • буровые работы – 6 тысяч евро;
  • цена теплового насоса – 6 тысяч евро;
  • расходы электроэнергии (за год) – 400 евро.

2. С горизонтальным коллектором:

  • стоимость непосредственно насоса – около 6 тысяч евро;
  • буровые работы потребуют 3 тысячи евро;
  • расходы на оплату электроэнергии – 450 евро за отопительный период.

3. Тепловой насос воздушного типа:

  • цена насоса – 8 тысяч евро;
  • монтажные работы – 500 евро;
  • электроэнергия – 600 евро.

4. Насос типа «вода-вода»:

  • насос можно приобрести за 6 тысяч евро;
  • бурение скважин – 4 тысячи евро;
  • расходы на электроэнергию (за год) – 360 евро.

Это приблизительные данные для оборудования мощностью порядка 6 – 8 кВт. В конечном итоге все зависит от многих факторов (от расценок на монтаж, от глубины бурения, от насоса необходимой мощности и т.п.) и расходы могут увеличиться в несколько раз. Но выбирая отопление с помощью теплового насоса, заказчик получает возможность получить независимость от растущих цен на традиционные теплоносители и отказаться от услуг теплоэнергетических предприятий.

Обзор использования системы на базе теплового насоса можно посмотреть на этом видео

Тепловая мощность теплового насоса воздух-вода (ТН), иначе – количество извлекаемого из окружающей среды возобновляемого тепла, прямо пропорционально температуре наружного воздуха. Чем холоднее воздух, тем затратнее извлечение из него тепла. Коэффициент преобразования COP меняется в зависимости от температур внешней среды: чем ниже температура «за бортом», тем больше энергии потребляет воздушный тепловой насос.

Определение мощности и выбор теплового насоса – дело достаточно сложное. Обычно реальные цифры и диаграммы производительности поставляются заводами – производителями тепловых насосов, как и специальное программное обеспечение для расчета и подбора оборудования. Здесь вводятся данные для конкретного объекта, расположенного в конкретном температурном регионе.

Тепловой насос: тепловая мощность для обогрева и ГВС

Разберем, от каких факторов зависит мощность ТН и, соответственно, стоимость блоков ТН, а также эффективность его работы.

Радиаторы или теплые полы

Система отопления с тепловым насосом обычно реализуется на базе радиаторной разводки и/или системы с теплыми полами, стенами или с системой фанкойлов. При этом температура нагрева теплоносителя отличается от 35-45 °C – для теплых полов, до 65-75 °C и выше – для системы радиаторов, что сказывается на величине мощности ТН. Чем ниже температура теплоносителя в системе отопления, тем меньше расход электроэнергии, меньше тепловая мощность, дешевле оборудование. Для модернизации систем отопления с радиаторами при замене затратных газовых котлов могут устанавливаться высокотемпературные воздушные теплонасосы с нагревом теплоносителя до 80 °C. Например – тепловые насосы Hitachi YUTAKI S 80. Даже при условии нагрева теплоносителя до 65 и выше градусов, такая система в несколько раз экономнее газового котла.

Схема реализации: только ТН, ТН + резервный котел

ТН. Если работает только тепловой насос, он должен полностью решать задачи по теплоснабжению и нагреву воды, в пиковые моменты подключая встроенный электрический нагреватель.

ТН+котел. Если ранее установлен газовый или пеллетный котел, он может взять на себя часть пиковых нагрузок и уменьшить общие энергозатраты теплового насоса.

Существуют различные схемы работы ТН, подбираемые для каждого объекта индивидуально: моноэнергетическая (только на электричестве), моновалентная (ТН+ТЭН) или бивалентная (ТН+котел). Оптимальная температура, экономически выгодная для перехода на резервный источник тепла, называется «точкой бивалентности». Для г. Киева и региона – это -7 °C.


Теплоизоляция здания

Подбирая тепловой насос для отопления дома, следует знать, что для более утепленного дома потребуется в разы меньше тепла, чем для строения без проведения работ по термомодернизации. Значения теплопотерь (удельных тепловых нагрузок) для различных типов зданий приведены в таблице.

Отсюда видно, что для возмещения теплопотерь помещения в 100 м2 в хорошо утепленном доме потребуется:

Q Н = 50 Вт/м2 х 100 м2 = 5000 Вт или 5 кВт тепловой мощности.

Расчетные значения теплопотерь приводятся исходя из расчетной минимальной температуры, к примеру, для Киевского региона это -22 °C.

Соответственно, для плохо утепленного дома получим:

Q Н = 200 Вт/м2 х 100 м2 = 20 000 Вт или 20 кВт тепловой мощности.

Такая разница: 5 кВт и 20 кВт, заставляет предпринять шаги для проведения термомодернизации (утепления) здания, а после этого выбрать более доступный по цене и экономный по затратам тепловой насос.

Тепловые насосы для отопления и нагрева воды (ГВС)

При выборе теплового насоса для частного дома обычно учитывают и работу ТН на нагрев воды для кухни, ванной или душевых. При этом учитывают суточное распределение нагрузок. Чаще пользуются горячей водой вечером или утром, а в зимнее время к этим нагрузкам присоединяется и работа ТН на отопление. Обычно у теплонасосных систем более приоритетными являются задачи горячего водоснабжения, а потом отопления, расчет ведут исходя из суммарных тепловых нагрузок: на отопление и ГВС.

Для определения тепловой мощности ТН для нагрева воды для бытовых нужд пользуются нормативными данными по потреблению воды определенной температуры и суммарному теплопотреблению, исходя из количества людей, проживающих в доме.

Для одного человека примем норму в 50 литров воды с температурой 45 °C, что соответствует норме потребления 0,25 кВт тепловой мощности.

Получаем, что для семьи из четырех человек, проживающих в частном доме 100 м2, необходима тепловая мощность:

Q W = 0,25 кВт/чел * 4 чел. = 1,0 кВт

Теперь можно провести усредненный расчет тепловой мощности с учетом суммарных нагрузок на нагрев теплоносителя для системы отопления и нагрев воды для бытовых нужд.

Суммарная тепловая мощность на обогрев и ГВС для качественно утепленного дома:

Q СУМ = Q Н + Q W = 5 кВт+ 1 кВт = 6 кВт.

Суммарная тепловая мощность для системы отопления и ГВС для плохо утепленного дома:

Q СУМ = Q Н + Q W = 20 кВт+ 1 кВт = 21 кВт.

А для условий «точки бивалентности», когда на улице -7 °C, и необходимо поддержать +20 °C внутри дома 100 м2, потребуется с учетом разницы температур:

Q расч.. = 6 * (20-(-7))/(20-(-22)) = 6 * 27 / 42 = 3,86 кВт тепла от теплового насоса.

И во втором примере, — для здания без теплоизоляции, необходимо:

Q расч.. = 21 * (20-(-7))/(20-(-22)) = 21 * 27 / 42 = 13,5 кВт тепла от теплового насоса.

Исходя из этих данных, с учетом температуры «точки бивалентности» и с запасом по мощности, из модельного ряда выбирают близкое большее значение тепловой мощности теплового насоса.

Что учитывает запас по мощности?

  • Перепады температуры входящей воды. Всем известно, что водопроводная вода зимой намного холоднее и перепад температур входящей / выходящей из ТН воды зимой больше.
  • Необходимость догрева воды до нужной температуры в баке – накопителе, если она из него долго не используется.
  • Увеличенный расход горячей воды и ее нагрев до более высокой температуры зимой.

По таблицам, предлагаемым производителем, исходя из температуры воды на выходе и температуры воздуха снаружи, по мощности подбирается комплект внутреннего блока и соответствующего ему наружного блока теплового насоса. Пример – таблица технических данных для высокоэффективных тепловых насосов воздух-вода серии Hitachi Yutaki S. Для полученных расчетных данных подойдет модель с производительностью по теплу около 5,0 кВт.


Отчего зависит стоимость теплового насоса?

Чем мощнее тепловой насос, тем выше его цена.
Как снизить стоимость теплового насоса?

  • Правильно и квалифицированно выполнить расчеты и подбор оборудования.
  • Утеплить здание.
  • Минимизировать теплопотери через окна и вентиляцию.
  • Установить низкотемпературные теплые полы или фанкойлы или смешанную систему (радиаторы + теплые полы, фанкойлы + теплые полы).
  • Применить бивалентную схему ТН + котел для снижения нагрузки на ТН.
  • Принять участие в программе IQ energy и сэкономить до 35 % стоимости оборудования и монтажа.

Более точный подбор теплового насоса, чтобы избежать лишних затрат или убытков, лучше доверить профессионалам.

Чтобы правильно подобрать тепловой насос, цены на который и на услуги монтажа были бы разумными и оправданными, обращайтесь к компетентным опытным специалистам компании АКЛИМА. Мы имеем огромный опыт внедрения современных теплонасосных систем и предлагаем качественные услуги по монтажу и сервису такого оборудования по всей Украине.

Использование низкопотенциального тепла окружающей среды для подогрева воды и отопления становится экономически выгодным при длительном использовании системы. Преградой широкому распространению подобных устройств является высокая начальная стоимость оборудования и его установки. Поэтому всегда актуален полный или частичный монтаж теплового насоса своими руками, позволяющий сэкономить значительные средства.

Рис. 1 Тепловой насос вода-вода в доме

При создании тепловых насосов для отопления используется природное низкопотенциальное тепло воздушных масс, почвы и воды. Водяные виды поглощают тепловую энергию из скважин, колодцев, прудов и других открытых водоемов. Тепловой насос работает подобно холодильнику, который забирает тепло из холодильной камеры и выводит его наружу через внешний радиатор.

При монтаже первичный теплообменник с циркулирующим теплоносителем помещают в емкость с водой, из которой забирается тепло. Вода всасывается водяной помпой, проходит по системе труб и далее поступает в испаритель — в устройстве при нагреве жидкости происходит ее испарение. В испарителе теплоноситель передает тепло фреону, для которого небольшая положительная температура 6 — 8 С является точкой кипения, и газообразный хладагент поступает в компрессор.


Рис.2.Схема теплового насоса вода-вода

Там происходит его сжатие, приводящее к повышению температуры газа, и дальнейшая подача в конденсатор. В конденсаторе тепловая энергия от газа с температурой 40 — 70 С передается воде в системе отопления, охлажденный газ конденсируется и попадает в редукционный клапан (дроссель). Его давление понижается — это приводит к большему охлаждению газа до жидкообразного состояния, в котором он снова подается в испаритель. Система работает в круговом замкнутом циклическом режиме.

Расчет теплового насоса

Для конструкции системы своими руками в первую очередь необходимо выполнить расчет с учетом потребностей в тепловой энергии (насосы могут дополнительно использоваться для обеспечения горячего водоснабжения дома) и возможных потерь. Алгоритм расчета состоит из следующих операций.

  1. Вычисляется площадь отапливаемого помещения.
  2. Основываясь на полученных значениях определяется общее количество энергии, необходимой для отопления исходя из расчета 70 — 100 ватт на квадратный метр. Параметр зависит от высоты потолков, материала изготовления и степени теплопроводности дома.
  3. При обеспечении горячего водоснабжения полученное значение увеличивают на 15 — 20 %.
  4. Исходя из полученной мощности выбирается компрессор, производится расчет и проектирование основных узлов системы: трубопроводной магистрали, испарителя, конденсатора, электрической помпы и других узлов.

Комплектующие для системы отопления с тепловым насосом при самостоятельном изготовлении

Обычному домовладельцу довольно сложно конкурировать с промышленными тепловыми насосами отечественного и зарубежного производителя, тем не менее его монтаж и изготовление отдельных узлов не являются невыполнимыми работами. Основной задачей при устройстве теплового насоса остается правильность расчетов, ведь при ошибке система может иметь низкий КПД и стать неэффективной.

Компрессор

Для монтажа понадобится новый или б.у. компрессор в рабочем состоянии с невыработанным ресурсом подходящей мощности. Обычная мощность компрессора должна составлять 20 — 30% от расчетной, можно использовать стандартные заводские агрегаты для холодильников или кондиционеров спирального принципа действия, обладающие более высоким КПД по сравнению с поршневыми устройствами.

Испаритель и конденсатор

Для охлаждения и нагрева жидкостей их обычно пропускают через медные трубы, помещенные в емкость с теплообменником. Для увеличения площади охлаждения медная труба располагается в виде спирали, необходимая длина рассчитывается по формуле вычисления площади с делением на сечение. Объем теплообменного бака рассчитывается исходя из реализации эффективного теплообмена, обычное среднее значение — около 120 л. Для теплового насоса рационально использовать трубы для кондиционеров, которые изначально имеют спиральную форму и реализуются в бухтах.


Рис. З Медная труба и бак для теплообменника

Данный способ конструкции теплообменников многие изготовители тепловых насосов своими руками заменили на более компактный, используя теплообмен по принципу «труба в трубе». Стандартный диаметр пластиковой трубы для испарителя — 32 мм., в нее помещается медная труба диаметром 19 мм., испаритель термоизолируется, общая длина теплообменника около 10 — 12 м. Для конденсатора можно использовать 25 мм. металлопластиковую трубу и 12,7 мм. медную.


Рис 4. Сборка и внешний вид теплообменника из медных и пластиковых труб

Для увеличения площади и эффективности работы теплообменника некоторые умельцы скручивают косу из нескольких медных труб малого диаметра, перекладывают их тонкой проволокой и помещают конструкцию в пластик. Это позволяет получить на 10-метровом отрезке площадь теплообмена около 1 кубического метра.

Терморегулирующий вентиль

Правильно подобранное устройство регулирует степень заполнения испарителя и в большой степени отвечает за производительность всей системы. К примеру, если поступление хладагента слишком велико, он не успеет полностью испариться, и в компрессор будут попадать капли жидкости, приводящие к нарушению его работы и понижению температуры газа на выходе. Слишком малое количество фреона в испарителе после увеличения температуры в компрессоре будет недостаточно для прогрева необходимого объема воды.


Рис. 5 Основное оборудование для теплонасоса

Датчики

Для удобства пользования, контроля работы, обнаружения неисправностей и настройки системы необходимо наличие встроенных температурных датчиков. Информация важна на всех этапах функционирования системы, только с ее помощью по формулам можно установить важнейший параметр смонтированного оборудования для водяных тепловых насосов — показатель эффективности СОР.

Насосное оборудование

При работе тепловых насосов забор и подача воды из скважины, колодца или открытого водоема происходит при помощи водяных помп. Могут использоваться погружные или поверхностные виды, обычно их мощность невелика, для подачи воды достаточно 100 — 200 Вт. Для контроля работы, защиты насосов и системы дополнительно монтируются фильтры, манометр, водяные счетчики и простейшая автоматика.


Рис. 6 Внешний вид собранного своими руками теплонасоса

Сборка теплового насосного оборудования своими руками не представляет больших трудностей при умении обращаться со специальным инструментом для сварки и пайки меди. Выполненная работа поможет сэкономить значительные средства – затраты на комплектующие составят около 600 у. е., покупка промышленного оборудования обойдется в 10 раз дороже (около 6000 у. е.). Собранная своими руками конструкция при правильном расчете и настройке имеет эффективность (СОР) около 4, что соответствует промышленным образцам.

Похожие публикации